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Decision Procedures for Elementary Sublanguages of Set Theory.

VII. Validity in Set Theory When a Choice Operator is Present

by

A. Ferro

University of Catania and Courant Institute

and

E.G. Omodeo
Enidata - Bologna

1. Introduction

In a language designed to formalize set theory, it is useful to incorporate a primitive

unary operator t) about which one postulates that t]s^s and TiJplj = 4> for every nonempty

set s. The existence of such an i\ implies the validity of both the foundation (or regularity)

axiom and the axiom of choice (see [8], [9], [10]). Moreover, in automatic theorem proving

the introduction of such an operator seems to be the most natural way of formalizing

induction proofs in mathematics (cf. [11]).

In this paper we consider an unquantified theory whose only relators and operators are

= (equality), € (membership),
[_J

(binary union), \ (set difference), t\ ; in addition to these

symbols, our language involves the usual propositional connectives and denumerably many

variables, which are supposed to range over finite sets. (Apart from the restriction of

considering only finite sets this is an extension of the theory MLS considered in [1]). We

show that if we impose some further semantical constraints on r\, then for every formula p of

our language either p is valid, i.e. true under all possible assignments of finite sets to the

terms, or some of these assignments makes p false, independently of the particular choice of

1). We achieve this by giving an algorithm which either detects the validity of p or builds a

counterexample of p (independent of p) whenp is invalid.

We consider also the language in which the symbols [J , \ are not allowed (cf. [2]) but

in which variables are supposed to range over arbitrary sets. A similar completeness theorem





is proven under weaker assumptions on t| by giving alternative decision method applicable

only to formulae of this sublanguage.

2. Semantics of the Choice Operator t\

If we simply required that r]s(.s and n^P) j = <j> for every nonempty set s, and assigned

some default value to -r]^, then the usual relationship between validity and satisfiability can

not be made independent of the particular choice of the function r\. For example the formula

•(]x^y&j\y(iX^T\x = i)y (2.1)

neither is valid, i.e. true under all possible assignments of (finite) sets to variables, nor its

negation has a model independent of t). The same holds for the formulas

v(.w&w€iT)x^vix (2.2)

vC-r)x&vi=T\x^vix (2.3)

To avoid this kind of problem we will put more semantical constraints on i). More

precisely we assume that for some well ordering < of all sets the following restrictions are

satisfied:

Rq t|<1> = 4) {empty restriction)

Ry a:^4)->t1x€x {choice restriction)

/?2 y^x-'r\x'^y {minimality restriction)

R^ y(.x-'y<x {regularity restriction)

^4 {Xi,X2,...,x„}Cx -{x,, X2, • • • x„}<x {finite monotonicity restriction)

/?5 Xi, . . . .x„<yQ<yy, . . . ,y„ -{xp • • ,x„,y,, . . . ,y„}< {yo.3'i. • .y^} (antilexicographic

restriction)

From /fj it follows immediately the following
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LEMMA 2.1. U A,B arc finite sets then either

(i) AQB and A SB, or

(ii) BCA and B^A, or

(iii) A<B if and only if max (i4\S)< max (BSA).

An immediate consequence is the following

/{g. If x,y,z are finite sets then

Moreover the following is also true.

R-j Let A|<A2< • • • <A„ be nonempty /mi/e sets which are pairwise disjoint then

if and only if

in the antilexicographic ordering.

Indeed assume that Ji</2< •••<'* and j,<j2< " " <]„ Clearly

{/„/2.---'JcO-iJ2-Jm}-'4,^U'4/,U • • UAiCAj^U^J.U U^„ (2.4)

and

0"iJ2,...J„}C{.p.2.---''J--^,U^-,U • • • U^;„CA,.^U^.,U • • • U^v (2.5)

Therefore if one of (2.4) and (2.5) holds then R-j is plain. Otherwise put / = {/j,/2,--,'i},

J = {Ji,J2>---Jm}- By R^ and by Lemma 2.1 we get

lil jiJ i6/\J JiAl

<-» max ( U '^i)< ™ax ( U ^j)
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«max A „3^ (;^< max A ^^^ ^j^

*~^^ max (tJ)'^^ max (AO

t-»max (/V)< max (TV)

which completes the proof of R-j.

3. Consistency

In this section we show the existence of a function t) satisfying restrictions Rq-R^ (and

hence also R^ and R-j). To this end we consider the Von Neumann hierarchy of all sets.

y„4.i
= {j|jCV^} for every ordinal a

V3=
[_J

V for every limit ordinal 3.

It is well known that we can consistently assume that for every set s there is an ordinal o

such that jCV„ ; the minimum such ordinal is called the rank of s and is written rank s. We

define a well ordering of all sets in the following way:

We first put s<t whenever rank s< rank t. To order sets having the same rank a we

proceed by induction on a. Indeed there is only one set of rank zero, namely the empty set.

Next assume we have ordered all sets of rank less than o and let j and t be two sets of rank

a. If 5 and t are both infinite we put s<t, where < is any well ordering of all infinite sets of

rank a. If one is finite and the other is infinite then we make the finite set preceding the

infinite set. Finally if they are both finite we order them antilexicographically (this makes

sense, because by the induction hypothesis the elements of s and t have been already

ordered). This completes the definition of a well ordering "<" of all sets. Now put

•T)<j) = (|) and T)S= the least element of s with respect <

It is immediate to verify that restrictions R^Ji^ and /Jj are satisfied. Moreover if yix then

rank (y)< rank (x). This shows that R^ is also satisfied. Furthermore if {xi,X2,.--,x„}Cx ,
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rank {x^,X2,...,x„}= rank x and x is finite then by the antilexicographic property {jr,,j:2,...,j:„}

<x. This yields R^. Finally if rank (x,)s rank (yQ),i=l,...,n, then rank

{xQ,Xi,...,x„,y^, . . . .y„}^ rank {yo.yi.--.ym}- This shows that/Jj holds completing the proof

of the existence of a function ti satisfying all the conditions Rq-R^.

4. Preliminaries on Multilevel Syllogistic

Multilevel Syllogistic (abbreviate MLS) is the unquantified theory whose language

consists of

variables x,y,z,...,

the operators U ,O A.

the relators € ,= .

In addition to these symbols we can use the usual propositional connectives —

,<t ,V, -,•(-. Variables are supposed to range over arbitrary sets whereas the operators and

relators are interpreted in the usual set-theoretical sense. An example of a formula in MLS

is the following:

x^{y[Jz)&xiy^x(iZ.

This theory was shown to be decidable in [1]. The method described in [1] can be rephrased

as follows. First we can limit ourselves, without loss of generality, to show how to test

satisfiability of any finite conjunction Q of literals of the following type:

( = )x = y\Jz,x = y\2

(€,«)x€y,x«y

To describe how to accomplish this we need some definitions.

DEFINITION 4.1. A place a of Q is a c|)/{<}>} -valued function defined on the variables

appearing in Q and which satisfies all literals of type (=) in 2.
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Notice that there are only finitely many places of Q.

DEFINITION 4.2. A place a at x of Q is a place of Q such that a(y) = {<}>} (resp. <^)

whenever x^y (resp. xly) appears in Q.

Let ~ be the equivalence relation defined by x~y^a{x) = a(y) for every place a of Q.

Partition the variables of Q into equivalence classes, pick a representative x in each class.

{yy~x} and replace each variable jc in 2 by its representative x. Let Q be the resulting

conjunction and let Y = {y^,y2,---,ym} be the set of all variables of Q .

DEFINITION 4.3. Let F be a set of places of Q. Then x~^y will be an abbreviation for

(V a €r)(a(x) = «(>>)). The following states the decidability of MLS [1].

THEOREM 4.1 Q has a model if and only if there is a set r = {aj,a2, " " • ,a„} of pairwise

distinct places of Q, an ordering < of K/— ^ > ''"^ a function F:{\, • • ,m}-{l, •••,«} such

that:

api^D " " P^oce at y, of Q for every /= 1,2, • ,m (4.1)

y-ryrPiO^FU) (4.2)

«/(;)(>',) = {4>}-y,>y; (4.3)

(where y denotes the element of Y/~y- containing y).

If r,<,F exist in such a way as to satisfy conditions (4.1) - (4.3) then models of Q can be

built as follows. Choose sets (jjj=l,...,n. Defining My^ before Afy^ whenever y^<y^ put:

Myi= U^ U^>'*:«m)W = {*}*i-*-'"r- (4-4)

Complete the definition of M by putting Mx = Mx for any other variable of Q. Then we have

the following basic fact [1]:

THEOREM 4.2. Formula (4.4) defines a model of Q whenever the following conditions are

satisfied
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(J ^(~^aj = ^ whenever ii^j (4.5)

Myjiaj for every i=\,...,m and j=l,...,n (4.6)

a-^<t> unless j = F(k) for some k. (4.7)

5. Decidability of Finite Satisfiability for MLS Extended with a Choice Operator

We extend the language of MLS by adding a new unary operator i) and show that the

following completeness result holds for this extended theory which we call MLS-p.

THEOREM 5.1: For every formula \\i of MLSt) either \\i is true under all finite

interpretations (i.e. interpretations in which the value of each term in \\i is a finite set) or its

negation is satisfied by some finite interpretation independently of the particular choice of t)

satisfying restrictions Rq — R^.

We prove this theorem by giving an algorithm which decides if — 1|* has or not finite

models and in the positive case is able to construct a finite model of — \^ which is independent

of the particular interpretation of ti. By the very same argument used in MLS we can restrict

ourselves to consider a finite conjunction Q of literals of the following types:

(=) x = y\Jz, x = y\z

(e,e) xiy, xly

ii))x = T\y

Let Q be the set of statements of type (=),(€,£) in Q^ and let 2,, be the result of replacing

in Q^ each variable by its representative in the equivalence relation determined by all places

of Q. Let Y={yi,y2,---,ym} be the set of all the variables appearing in Q^. Our main result is

a consequence of the following decidability theorem.

THEOREM 5.2 Q- has a finite model if and only if there exist a set of pairwise distinct

places r = {a[,a2>-'°'n} °^ Q ''^^ a function F:{1. . . . ,m}-{l, . . . ,n} such that

o.p^() is a place at y, of Q for every i= 1,2,. ..,m. (5.1)
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Moreover, let < be the ordering on Y/~^ defined as follows. Put

A, = 0-:«,0',)=1}

and let yi<yj whenever A; precedes Aj in the antilexicographic ordering offinite sets of integers.

Then the following properties must also hold

«/-O0 (>.) = {*>->;<>; (5.3)

«;()',) = {<t> }-;</=•(') (5.4)

If yjt = t)yj appears in Q^ then either a^()'y) = <j> for all k=l,2,..,n andyy~p>'^, or (5.5)

"fo*) (>;) = {<<>} and

<^F(k)iyj)=W<yj'~ ryk^yj'<yk) (5.5. a)

«,()->) = {<t>}-Vae€r(a^(y^.) = {<t>}-/<0 (5.5.b)

Furthermore if conditions (5.1) - (5.5) are all satisfied then a finite model of Q ,

independent of the particular choice of t] , can be effectively constructed.

Proof. Assume that 2-q has a finite model M and let Afy, , . . . .Afy, with l-^ij^m be

pairwise distinct sets such that {My, .... ,My,}= {My^, . . . ,A/y„}. Let A^,A2,...yA„ be the

nonempty disjoint parts of the Venn diagram determined by My,
,

,My, . Assume

A^<A2< <A„ in the well ordering of sets associated with t]. Let a,, . . . ,a„ be the

places of Q defined by

a.j{yj) = {<^} if and only if A,CMyj.

Put F(i) = k if and only if My,(:Ai^. We claim that r = {a[, . . . ,a„} and F satisfy conditions

(5.1) - (5.5). Indeed conditions (5.1) and (5.2) are immediate. To verify the remaining

conditions we will make use of the following

LEMMA 5.3.

y,~Y-yj if and only if My, = Myj (5.6)

y,<yj if and only if My^<Myj in the well ordering of all sets associated with x\. {5.1)
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Proof. (5.6) is plain by the definition of the places a,. Moreover condition (5.7) is an

immediate consequence of R-j proven in Section 2.

To verify condition (5.3), assume that a pf^j^iy ,) = {<i>} then MyjiMy^ and by R^ it follows

Myj<My,. Applying Lemma 5.3 we get yj<y, which proves (5.3). Next we verify (5.4).

Let ay(y,) = {<j>} , then AjQMy^^Af^iy By R^ and R^ we have A^<A/r(,^ and hence j<F(i)

which completes the verification of (5.4). Finally to show that (5.5) also holds assume that

yj» = T)yj appears in Q^. Since Af is a model of Q^ then Myj. = i)Myj. Thus if Myj=^ then

Myj. = ^ and by Lemma 5.3 yj. — ^-yj. Otherwise if Myj¥=(it then by /?, Myj.^Myj and

apfj,^(yj)={<i>}. Therefore if a.fr^i^^(yj) = {<i>} for some k then My^(.Myj. By /?2 it follows that

Myj.-^My^ and hence by Lemma 5.3 either y^. — ry* or y;«<y* showing (5. 5. a). Moreover if

o-,{yj) = {^} then ^i^A,QMyj. If follows by R^ that My^, is less than or equid to each element

of A,. By applying R-^ we have Myj.<A,. Therefore if af(jj.) = {^} then A(<ZMyj,<A, which

by i?4 gives A(<A,. This yields Kt completing the proof of (5.5 b) and showing that

Theorem 5.2 holds in one direction.

Conversely, assume that r = {ai,a2, . . . ,a„} and F can be found in such a way as to

satisfy all the conditions (5.1) - (5.5). We will show how to build a finite model of Q^ which

is independent of the particular choice of ii Csubject only to the restrictions Rq-R^).

Let / be a finite set of odd rank and put

/™ = {Um-,}}form>l

Notice that all these sets /^ have odd ranks r„ and ri<r2< • • • Moreover /i</2< " " "

in any well ordering of all sets satisfying restriction R^.

Next put

<rj={lj} for every j=l,2...,n (5.8)

Defining Afy, before Myj whenever >',<y, put:
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Extend the definition of M to every variable y of Q^ by putting My = My. Since by

hypothesis conditions (4.1), (4.2), and (4.3) oi rheorem 4.1 are satisfied then we can try to

apply Theorem 4.2. Since conditions (4.5) and (4.7) are trivially satisfied by (5.8) then it

remains only to verify that (4.6) also holds. To this end we make use of the following

LEMMA 5.4

rank (My,)= max {ran*((T^):a^(y,) = {<t>}}

Proof. We proceed by induction. If y, is minimum in Y/~^ with respect to the ordering

defined in the statement of Theorem 5.2, then by (5.3) and (5.9)

and the lemma is trivial.

Next assume that the lemma holds for every y less than y,. Let

p= rank ( IJ <^;) = ™^ {'««* ^y'^j(ji) = {^) )

ap;)=(<i>}

and let

q= rank{Myi^:af^^^(j,) = {<i>}}= max { rank (A/yi):af(;fc)Cy,) = {<J)}}+

1

We want to show that p^q. Indeed by the induction hypothesis and by (5.3) if

«f(*)0'.) = {<t>}. then rank (A/yJ= max { rant (a^):a^.(yj = {<}>}}. But by (5.4) if a^(yt) = {(f)}

then j<F(k) and hence rank ((Ty)< rank (o-f(i)). It follows that rank (MyJ< rank (o-f^^^) for

every k such that a f^^^{y ^) = {^} . Therefore

9-l<max{ rank ((Tf(t)):af(^)(y,) = {4>}}^p.

This yields q^p completing the proof of the lemma.

By this lemma it follows that each A/y, has an even rank whereas each / has an odd

rank. This implies My^idj
,
proving (4.6). Then we can apply Theorem 4.2 having that

(5.9) defines a model M of all MLS statements in Q^. In order to verify that M is indeed a

model of Q^ no matter how ti is chosen we proceed as follows. Assume thaty = TiA: appears

10
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in Q^ and let yj. = y and yj = x. Thus yj, = rtyj appears in Q^. By (5.5) if a^(yj) = ^ for all k

then yj. — ^yj, Myj, = Myj = ^ = Mx = My and My = f\Mx. Otherwise afr^j,^(yj)={<i>} which yields

Myj,(:Myj. We will show that Myj, is indeed the least element of Myj in any well ordering of

all sets satisfying R^,^^, and R^.

To this end we show the following lemma in which < is the ordering of J'/~r

mentioned in Theorem 5.2.

LEMMA 5.5. If y^<yi^'then Myf^<'My^ in any well ordering <' of all sets satisfying

R^,R^ and R^.

To prove this lemma we need to show that the following is also true.

LEMMA 5.6.

^yh<'h(h)

in any well ordering <* of all sets satisfying R^,R^, and R^

Proof: Again we proceed by induction. If y^, is the least element of l'/~r with respect to the

ordering < defined in the statement of Theorem 5.2 then Myf,= \^ a, by (5.3) and

(5.9). But by (5.4) if a,(n) = {<|>} then t<F{h) so that I,^'lF(h)-i<' UfcA)-i} in any well

ordering <* of sets satisfying /?3,i?4, and R^. By R^ we get

A/yft = {/,:ct,(>',) = {4.}}<*{{/f(,)-,}} =V)
proving our lemma when y^ is the least element of Y/~^.

Next assume that the lemma holds for every yj^ with y).<yh- By (5.8) and (5.9) we have that

My, = {I,:aXy,) = W]\J {A/>,:af(„(y,) = {<(.}}. Now if «,(>,) = {<{>} then by (5.4) r<f (A) and

/,s'/^(^)_,<*
{/f(;,)_i}. Moreover if a f^k)(yh) "^ i^} ^^^° ^Y ^^^ induction hypothesis

Myk<'lnk) and by (5.4) Fik)<F{h). Thus A/>'*<*/^(„s*/f(,)_, <'{I^^^^_,}. We can then

conclude that every element of My/, is less than {//r( ;,)_,} in any well ordering <* of all sets

11
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satisfying R^-R^. This implies that Afy^<*{{/;r(^)_i}} = /f(;,)
completing the proof of Lemma

5.6.

Now we are ready to prove Lemma 5.5. Indeed if yi,<yk then A^<A^ in the anti-

lexicographic ordering of all sets of integers. Let A;, = {jpi2>-''i} ^^^ ^*~0i J2'-'./m} with

j,</2< • • • <i, and Ji<J2< " " " <Jm- Since Af,<Ai^ then there exists J;€{ji,... j„} such that

Of+i,---Jm}£{'i.--.'r} and {/,,.. .,i,}\{/i, • • JJ <{j(}- Thus

u -.<•%
a/y*) = {*>}<»

On the other hand if af^^-^{y),) = {^}& a.f^^-^{yf.)
= <^ then F(q)<j( and by Lemma 5.6

Afy <*/f( )<'/ . Therefore we have that

U '^rU{A/y,:af(,)W = {4.}<ftaf(,)0-,) = <j,}<V,
a,(>») = {4>}<i

Using /?g and if4 we get

MyH= U «^rU{^3',:af«,)W = {<l>}}<V U
",(>,) = {*}

( U '^rU{A/y,:af(,)(yJ = af(,)(y,)=={<J,}})s-A/y,

which completes the proof of Lemma 5.5.

Next we show that Myj, is the least element of Myj in every well ordering <* of all s^ts

satisfying R^-R^. Indeed we know that by (5.9)

Now by (5.5.b) if

then

This implies that if

Myj= U ^,U{A/y,:af(,)(y,.) = {4.}}

«,(>,) = {4>}

(Va^€r)(a,(y,..) = {<t>}-^<0

12
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a^O';.) = {<!>} then /^s '/,_,< '{/,_,}

for every t such that a,(>,) = {4)}. Consequently if a^(^)(y^. ) = {<!>} ^h^n by lemma 5.6

A/y^<'/f(^) <'{/,_ J for every t such that a,(y^)={<})}. Therefore every element of My^, is less

than {/,_]} for every t such that 0,(3'^) = {<]>}. It follows by R^ that

for every t such that a,(yy) = {(j)}. To complete our proof it remains to show that My^, is less

than or equal to every element A/y^, with ap^^^~^{yj) = {^}, in every well ordering <* satisfying

R-^-Ry Indeed if af(t)Cyj) = {4>} then by (5. 5. a) either y^.~r)';t and Myj, = My^ or yj,<yi^ and

by lemma 5.5 Myj,<'Myi^. We can then conclude that A/y,. is the least element of Afy in any

well ordering <' of all sets satisfying R^,R^, and R^. Therefore Myj, = j)Myj and

My = My = \fyj, = t)Myj=^i)Mx=-r]\fx. We have thus shown that M is indeed a model of Q

independent of the particular choice of ti completing the proof of our main theorem.

6. A Validity Test for a Weaker Theory

In this section we consider the theory which results by dropping the symbols P) ,U ,\

from the language considered in the preceding section. Moreover we assume that only

restrictions Rq-R^ must hold and that variables can range over arbitrary sets (not necessarily

finite)

.

First we consider the case in which the ti operator does not appear. So let Q be a

conjunction of literals of type

(=,?t) X = y, x¥=y

(€,«) xdy, x(y

where x,y are either variables or the constant <|).

We describe a satisfiability algorithm for Q originally given in [2]. Let ~ be the smallest

equivalence relation on the set of all the variables of Q such that x = y in Q implies x~y.

Choose a representative x in each equivalence class {y:y~x}, replace every variable by its

13
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representative in Q and let Q be the resulting formula. The following is part of [2].

THEOREM 6.1. Q has a model if and only if in Q the following conditions are satisfied.

(6.1) There is no explicit contradiction of the form xi= x or x^y & xiy.

(6.2) There is an ordering )'i,)'2.--.>'m "/ '''* variables of Q such that y[~<t>, and such that

y^^yj in Q implies i<j.

A

Let x^y denote the fact that a:€> is in g. If (6.1) and (6.2) are satisfied then models of

Q can be built as follows. Choose sets tr J = l, . . . ,m, such that ct, = <j>. Next going upward

in the ordering of variables, put

My,=^.\j{Myj-yj^y,} (^-^^

and complete the definition of M by putting Mx =Mx for every other variable x of Q. Then

the following is true (see [2]).

THEOREM 6.2 Formula (6.3) defines a model M of Q whenever the following conditions

hold

My^taj for every i,j=l,...,m (6.4)

My^i=Myj unless i = j (6.5)

Next let 2^ be a conjunction of literals of type

i=,i=)x = y,x¥=y

i^,i)x^y,xty

(Ti)yj. = -nyj

Where x,y,yj,yj, are either variables or the constant <j). We want to show that the following

holds.
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THEOREM 6.3. Either Q^ is unsatisfiable or there is an effectively constructible

assignment of sets to variables which makes Q^ true independently of the particular choice of i]

subject only to satisfy restrictions Rq — R-^

In order to prove this theorem we make use of the following set theoretic lemma.

LEMMA 6.4 For all sets Sq,s^, ,s^ + -^
if

^o
= 'S'„+i and r\Sj(iSj^^J = 0,...,n, then t]Sq=^Si= • =t)j„

Proof. Indeed since tij €.S:^, then T\Sj^^^y)Sj by /Jj- This implies the lemma since Sq=s„ + i.

To show that Theorem 6.3 holds, we first add to g^ the following sentences.

<J>€>'j^>'^. = <t> (6.6)

y;.6yV(y.= ct><fey^.. = <t>) (6.7)

n n + 1

where <yj,yj>> and <> .y , > range over all pairs of variables appearing in literals of type

(t)).

For our purpose is then sufficient to show that, for each disjunct q in the disjunctive

normal form of 2ti> either <?•,, is unsatisfiable or it has a model independent of t). To do this,

let q^ be one of these disjuncts and let q be the result of dropping literals of type (ti) in q^.

We can assume that no pair of equivalent non-identical variable exist ia q. To finish the

proof of Theorem 6.3 it is sufficient to demonstrate the following

LEMMA 6.5. ^^ has a model if and only if there is an ordering Z],Z2, • • ,z„ of the variables

of q such that

z, is {equivalent ) <{>;
(6-9)

A

z„ez^-M<v; (6-10)

(z,~y^.<&z,~y^.<Sz^€zJ-v<w (6.11)

for all variables z^,z^,z^ and all yj,yj» appearing in literals of type (ti). Moreover in the positive
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case a model of q- independent of the particular choice of r\ can be effectively constructed.

Proof. First assume that q.^ has a model M. For every pair x,y of variables of q^ define

x<*>' to mean that either

Mx<My in the well ordering of all sets associated with ti (6-12)

or

Mx = My ,x,y are distinct and for some y ,x~)'-, and )'€>', (6.13)

Let us first prove that there are no cycles of < "^
. That is there are no distinct variables

x„,x^_^,...,Xq of q^ such that x„<^x„_,<"'" • • • <"^*o where n>0 and Xq is the same as x„.

Indeed by (6.12) and (6.13) this could only happen if for k = n,n-\, • • ,lA/Xjt = Af.Tj^_, and

A

for some y ,X(t~)', andx^_j€y,. Therefore we would have

A A A

and since Xq is x^ then y , ~Xq. It readily follows from (6.8) that all the x- must be the same,

contradicting x„<"^x„_,. Therefore the transitive closure of < "'' can be extended to a linear

ordering z^yZj, • • • ,z„ of the variables of ^^. Moreover if Mxi=<i> then <t><Afx in any well

A

ordering of sets satisfying R^. On the other hand if Mx = <^ and for some y:,x~y:, and ({)€y

then by (6.6) x is <}>. This shows that Zj must be (equivalent to) <{) , completing the proof of

A

(6.9). As for (6.10) if z„€z^, then A/z„€Mz^,Afz„<Afz^ and by (6.12) m<v. Finally if

A

z^-~yj,z^~yj, and z^^z^ then Mz^=-i]Mz^ and Mz^^Mz^. It follows that Mz^^Mz^. Now, if

Zy and z^ are not distinct then v = h'. On the other hand if z^,z^ are distinct and Mz^<Mz^

then by (6.12) v<m'. Finally if z^,z^ are distinct and Mz^ = Mz^ then by (6.13) again v<m.

This concludes the verification of (6.11) completing the proof of Lemma 6.5 in one direction.

Conversely, assume that there exists an ordering Z]^,Z2, • • • ,z„ of the variables of q.^
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satisfying conditions (6.9) - (6.11). Then a model of q^ independent of -i) can be constructed

as follows. Put Mzj = CTj =
<J) and going upward in the ordering of indices / = 2,3, ,m put

<T,= {{Wz,-,}} (6.14)

A

By an easy induction on i it can be proven that

rank (Mz,) = 2(i- 1) for each i=l,2,...,m. (6.16)

This implies immediately that conditions (6.4) and (6.5) are satisfied. Therefore Af is a

model of q. To show that M is indeed a model of q let z^=y\z^ be in q . Then for some j,

A

z^~yj. and z^~yj. By (6.7) either z^, = Zy = <j> and Mz^ = ^ = y\^ = 'r\Mz^, or z^^z^, and by (6.15)

Mz^(.Mz^. In this last case we want to show that Mz^ is the least element of Mz^ in any well

ordering "<" of sets satisfying Rq-R^. Indeed by (6.10) and (6.14) it follows that

A

Afz^,€ • • • €{A/Zy_j} which by R^ yields Mz^<{Mz^_^}. Moreover if Mz^dMz^ with z^dz^ and

z^ distinct from z^ then by (6.11) u<w . This by (6.14) and (6.15) gives

AfZj,€ • • • €{A/z^_i}€Afz^ which implies Mz^<Mz^. We can then conclude that Mz^ is the

least element of Mz^ and that M is indeed a model of q . Therefore Lemma 6.5 is proved

implying that Theorem 6.3 also holds.

7. Optimizations of the Weaker Validity Test

To improve the efficiency of the decision algorithm we have described, in forming Q we

avoid to include in it the formulas (6.6) - (6.8). As before q denotes a disjunct of the

disjunctive normal form of Q^. However, we modify q^ as follows. We non-deterministically

"guess" for which literals yjt = 'i]yj yj will be nonempty in the model we are after. For each

of these we add yj'^yj to q^ ; for the remaining literals y^. = ti>'^ we add y^=({) and y^. = <}> to

q^. Define the relation ~ on the variables of q as the smallest equivalence relation such that
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x—y whenever x = y is in q^ (7.1)

<t)~x whenever zi.w is in q^ with Z'~(i>,x~yj,,w~yj. (7.2)

For every "cycle"

Zoex,,z,€jr2,...,z„_,€jr„,z„€xo in q^ with n>0

and Xi^—yj, ,z^~yj for jfe = 0,l,..,n, one must have Zq~z,~ • • • ~z^ (7.3)

The remaining steps of the validity test are the same as in the preceding algorithm. More

precisely the existence of an ordering z-^,Z2^ ' ' '

'^m °^ ^^ variables of q^ satisfying (6.9) -

(6.11) is tested. Finally Lemma 6.5 can be proved in analogy with the preceding proof.
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